

# **Passive Saline Encroachment in the Floridan Aquifer System (1991-2011)**

Rick Copeland and Andy Woeber Division of Environmental Assessment and Restoration February 25-26, 2020





#### For Period of Record (1991-2011)

- 1) Did water quality changes occur in the Floridan aquifer system (FAS)?
- 2) If changes were observed;
  - a) Estimate areal extent of changes
  - b) Estimate rates of change
  - c) Discuss plausible drivers of change



## Extent of FAS





### Study Area





### Background Network Wells





### Trend Network Wells and Springs





### Indicators

| Indicator                                      | Abbreviation | Unit of<br>Measure     |  |
|------------------------------------------------|--------------|------------------------|--|
| Alkalinity                                     | Alk          | mg/L                   |  |
| Calcium                                        | Са           | mg/L                   |  |
| Chloride                                       | CI           | mg/L                   |  |
| (Spring)<br>Discharge*                         | None         | (m <sup>3</sup> ) /sec |  |
| Groundwater<br>Levels*                         | GWLs         | m                      |  |
| Magnesium                                      | Mg           | mg/L                   |  |
| Potassium                                      | К            | mg/L                   |  |
| Sodium                                         | Na           | mg/L                   |  |
| Sulfate                                        | SO4          | mg/L                   |  |
| Total<br>Dissolved<br>Solids<br>*Aquifer Poten | TDS<br>tials | mg/L                   |  |



### **Statistical Trend Tests**

#### WSR Test

- Before-After Test
- Divide data at each site into three periods: early (E), middle (M), and late (L).
  - E = 1991-1997
  - M = 1998-2004
  - L = 2005-2011
- Determine median at each site for each period
- Discard M data and compare L to E medians at each site

#### RK Test

- Tests for trend at each site, then tests for overall trend for region
- Minimizes effect of serial and spatial correlation

| Test                     | Abbreviation |  |
|--------------------------|--------------|--|
| Wilcoxon Signed<br>Ranks | WSR          |  |
| Regional-Kendall         | RK           |  |

| Network    | Sampling<br>Frequencies | Trend Test |  |
|------------|-------------------------|------------|--|
| Background | Infrequently            | WSR        |  |
| Trend      | Monthly or<br>Quarterly | WSR<br>RK  |  |
| Springs    | Mostly Quarterly        | WSR<br>RK  |  |



### **Methodology for Study**

- For both WSR and RK tests
  - Ho: No change [in median (WSR) or slope (RK)]
  - Ha: Change
  - Two sided test; alpha = 0.10
    - Results adjusted for effect of multiple comparisons
      (Benjamini-Hochberg procedure)



# Autocorrelation (AC)

- WSR tests: took steps to account for AC
  - Serial: Median value of 7-yr periods
  - Spatial: Built on work of Boniol (2002), based on chloride
    - Kriging exercise in St. John's River WMD: range = 15,240 m
    - For the study constructed 927 hexagons (diam = 15,240 m)
    - Plotted all sites on hexagon coverage
      - If more than one site located in a hexagon, randomly selected one site to represent hexagon.



### Sites in Hexagon Grids Sampled in Early (E) and Late (L) Periods

Total Sites = 202

Simple Random sample 202 / 927 hexagons (Study Area)





# **Significant Results**

|                      | Trend Wells |      | Springs   |      | Background<br>Network Wells |      |
|----------------------|-------------|------|-----------|------|-----------------------------|------|
|                      | Direction   | Test | Direction | Test | Direction                   | Test |
| Aquifer<br>Potential | Down        | RW   | Down      | W    | Down                        | W    |
| Alk                  | Up          | R    | Up        | RW   | Up                          | W    |
| Са                   | Up          | R    | Up        | RW   | Up                          | W    |
| CI                   |             |      | Up        | RW   | Up                          | W    |
| Κ                    |             |      | Up        | R    |                             |      |
| Mg                   | Up          | RW   | Up        | R    | Up                          | W    |
| Na                   | Up          | R    | Up        | RW   |                             |      |
| SO4                  |             |      | Up        | RW   |                             |      |
| TDS                  | Up          | R    | Up        | RW   | Up                          | W    |
| R = RK test          | W= WSR test |      |           |      |                             |      |



Comparing median concentration (L-E)

Sites (176) with measurable change, upward concentrations in 70 percent of sites





Irregular Sampling





#### Rates of Change for Selected Indicators (per decade)

| Springs                           | Discharge<br>(m3/sec) / Dec | Na<br>(mg/L) / Dec | CI<br>(mg/L) / Dec | TDS<br>(mg/L) / Dec |            |
|-----------------------------------|-----------------------------|--------------------|--------------------|---------------------|------------|
| Med of RK and<br>WSR<br>Estimates | -2.16                       | 0.63               | 1.22               | 18.69               | Relative   |
| Trend Wells                       | GWL<br>(m) / Dec            | Na<br>(mg/L) / Dec | CI<br>(mg/L) / Dec | TDS<br>(mg/L) / Dec | of change: |
| Med of RK<br>and WSR<br>Estimates | -0.18                       | 0.20               | 0.43               | 7.19                | 2% – 6%    |

#### Plausible Drivers of Change

- 1) Below Normal Rainfall; loss of recharge to FAS
- 2) Groundwater Extraction
- 3) Rising sea levels



#### **Conceptual Model**

Carbonate Aquifer System Near Coast

- Assume Sea level is <u>static</u>. If aquifer potentials decline;
- 1. Probability of saline encroachment increases along coasts,
- 2. Probability of deep, mineralized groundwater to migrate upward increases.



**Period of Normal Precipitation** 



### **Florida Precipitation**







### **GW Extraction and Encroachment**



Unconfined coastal aquifer depicting vertical and horizontal encroachment induced by pumping (modified from SJRWMD 2017)



#### **Passive Encroachment (Fetter 2001)**



1. When some fresh GW diverted from aquifer, yet hydraulic gradient still slopes towards FW/SW boundary

2. May take hundreds of years for boundary to shift a significant distance

#### **Decreasing Precipitation** $\rightarrow$ **Recharge**





| Years     | Annual Mean          |                   |
|-----------|----------------------|-------------------|
| 1991-1998 | 147.07 cm (57.90 in) | During study, but |
| 1999-2011 | 129.46 cm (50.97 in) | decreased by 12%  |



#### Recharge to FAS FAS (Bellino et al. 2018)

≈ **19.00** cm/yr

#### **Extraction from FAS**

GW extraction (Marella 2004) Used 1990 as baseline (**2.39** cm/yr) ≈ 13% of recharge (**Important**)

Assume recharge declined post 1999

- $\approx$  -2.28 cm/yr (linear?)
- ≈ **-27.36** cm (cumulative)

However, estimated extraction 1990-2010 (**net decrease**)

Relative to recharge, 1991-2011, effect of extraction is minor



Walton (2007) estimated rise (1950-1999) ≈ **0.3 cm/yr** For 1999-2011, cumulative total ≈ **3.6** cm

Relative to recharge reductione, effect of sea-level rise is minor

### Primary Driver Reduction in **rainfall**, and subsequent reduction in **recharge**



### Precipitation 1991-2018

Can Florida Recover? If steady state, eventually yes





### **Conceptual Model**

non-steady state model

#### Assume Sea level is rising

#### Independent of precipitation

• Passive encroachment will continue



# Importance of Study

- Passive encroachment observed in FAS
- Changes: large in areal extent (at least 73%), but small relative percent change (2%-6%)
- Mostly driven by reduction in precipitation/recharge
- If steady state conditions: trends could reverse
- However, with sea level rise, understanding passive encroachment becomes imperative



#### **Questions?**

Rick Copeland, P.G., Ph.D.

#### Florida Department of Environmental Protection

rick.copeland@floridadep.org

(W) 850-245-8503