3

L4 = -Heﬂ' 2 %

Ty e - -
L T W -

-

’C‘ﬁcac;

S 1.1-'-\-.. 3

hment in th

1991-201

7 4

o RICk C“"d‘[ﬁ“ela'nd and Andy Woeber
N '“.IVISIOH of Enwronmental Assessment and Restoration

e .
£y \ _l
-

o e Mﬁ uFJ:Lbruary 25:26, 2020

- RN

ftr o




Objectives

For Period of Record (1991-2011)

1)  Did water quality changes occur in the Floridan aquifer system
(FAS)?
2) If changes were observed;
a) Estimate areal extent of changes
b) Estimate rates of change
c) Discuss plausible drivers of change
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*Data sourced from: Williams, L.J., and Dixon, J.F., 2015,
Digital surfaces and thicknesses of selected hydrogeologic
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Survey Data Series 926, 24 p.




Legend

—— Major Rivers and Canals
Study Area

r Area Excluded From
) Study

Water Management
[] pistrict (WMD)

Boundaries

Northwest Florida WMD
Suwannee River WMD
St. John's River WMD
Southwest Florida WMD
South Florida WMD

Florida Counties

Suwannee River
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Map created by Andy Woeber, WMS, DEP




Background
Network
Wells

Background Network Wells in Study Area

(O Well Location

Apalachicola, Chipola,

] Lower Chattahoochee, and
Lower Flint Hydrologic
Units

Study Area

Background Network
Wells = 184

[ IMiles
Map created by Andy Woeber, WMS, DEP




Springs and Trend Network Wells in Study Area

Trend Network Wells
and Springs s

Trend Network Wells
A Springs
Study Area
0 25 50 100 Miles
Y Y T AN N B B |
t ] T T T T T 1
0 40 80 160 Kilometers

Trend Network wells =
Trend Network spring =
Other springs =

Study Area
= 73% of FL




Indicators

Abbreviation Unit of
Measure

Alkalinity Alk mg/L
Calcium Ca mg/L
Chloride Cl mg/L
(Spring) None (m?3) /sec
Discharge*

Groundwater GWLs m
Levels*

Magnesium Mg mg/L
Potassium K mg/L
Sodium Na mg/L
Sulfate SO4 mg/L
Total TDS mg/L
Dissolved

Solids

*Aquifer Potentials



Statistical Trend Tests

WSR Test

+ Before-After Test
Abbreviation y

« Divide data at each site into three periods: early
Wilcoxon Signed (E), middle (M), and late (L).

Ranks « E =1991-1997
Regional-Kendall RK e M =1998-2004

« L =2005-2011

FSamP"n_QJ Trend Test « Determine median at each site for each period
requencies » Discard M data and compare L to E medians at

each site
Background Infrequently WSR RK Test
Monthly or WSR * Tests for trend at each site, then tests for
Trend Quarterly RK overall trend for region
WSR » Minimizes effect of serial and spatial correlation

Springs Mostly Quarterly RK



Methodology for Study

* For both WSR and RK tests
* Ho: No change [in median (WSR) or slope (RK)]
« Ha: Change
« Two sided test; alpha = 0.10
» Results adjusted for effect of multiple comparisons
(Benjamini-Hochberg procedure)



Autocorrelation (AC)

* WSR tests: took steps to account for AC
« Serial: Median value of 7-yr periods

« Spatial: Built on work of Boniol (2002), based on chloride
 Kriging exercise in St. John’s River WMD: range = 15,240 m
 For the study constructed 927 hexagons (diam = 15,240 m)
 Plotted all sites on hexagon coverage

* [f more than one site located in a hexagon, randomly selected
one site to represent hexagon.
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Sites in Hexagon

Grids Sampled in
Early (E) and Late
(L) Periods

Total Sites = 202

Simple Random sample
202 / 927 hexagons (Study Area)

Monitoring Sites Located
in Hexagon Grid
Sampled in Two Time Frames:
1991-1997 and 2005-2011
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Additional Spring Discharge
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Significant Results

Trend Wells Background
Network Wells

Direction Test Direction Test Direction Test

Aquifer Down RW Down W Down W
Potential

Alk Up R Up RW Up W
Ca Up R Up RW Up W
Cl Up RW Up W
K Up R

Mg Up RW Up R Up W
Na Up R Up RW

SO4 Up RW

TDS Up R Up RW Up W

R=RKtest W=WSR test



Comparing median
concentration (L-E)

Sites (176) with
measurable
change, upward
concentrations in
70 percent of sites

Direction of Chloride Changes

Irregular Sampling

“Semi-regular’” Sampling
(quarterly or monthly)

Spring and Trend Well Network

Change in Chloride
Concentrations )
Spring Location Trend Well Location {5
Direction Direction
oo $ v
No Change ® No Change
@ Down @ Down
Not in Study Area
[ State of Florida Boundary
0 25 50 100 Miles
S Y Y T Y |
rr rtjg1 17171
0 40 80 160 Kilometers

Concentrations
Spring Localion
Mhrection
f up

My Change
& Down

0 R ]

0 ELUN-

P2 Not in Study Arca
1 State of Florida Boundary

S T N A
T T T

Irregular Sampling

Well Location
Direciion
$ Up

® NoChange
4 Daown

100 Miles

16y Eilomieters
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Rates of Change for Selected
Indicators (per decade)

Discharge Na Cl TDS
(m3/sec) / Dec (mg/L) / Dec (mg/L) / Dec (mg/L) / Dec

Med of RK and

metimaes GWL N Cl TDS magnitude
Trend Wells (m) / Dec (mglL)al Dec (mg/L) / Dec (mg/L) / Dec of change:

Med of RK 2% — 6%

and WSR -0.18 0.20 0.43 7.19

Estimates

Plausible Drivers of Change

1) Below Normal Rainfall; loss of recharge to FAS
2) Groundwater Extraction

3) Rising sea levels
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Conceptual Model
Carbonate Aquifer System Near Coast

« Assume Sea level is static. If aquifer potentials decline;
1. Probability of saline encroachment increases along coasts,
2. Probability of deep, mineralized groundwater to migrate upward increases.

MNormal Freshwater Lens Reduced Freshwater Lens Potentiometric Surface /
During Dry Period Water Table Drop

Land Surface / Normal Potentiometric
Surface / Water Table

11 1 =
o I I
1 1 1 1 1 § ¥ -Fr 5
(1 1T 1T 1T T 1T 1T 1T 1T 1T 1>
11 1 1 1 1 1 1 7§

Period of Normal Precipitation Period of Below Normal Precipitation



Florida Precipitation

Annual Florida Rainfall: 1931-1990

754

70

65

60|

Inches

L,

\[TAU VV\[

55A A
....... r ¥

50

45-|

--------------- 53.54

1930

1940

1950

1960 1970 1980 1990
Year

Annual Florida Rainfall: 1991-2011

70

65

60|

55-

Rain (inches/year)

50

45

40

Fits
Regress
= === Lowess

1990

SERCC, 2014

7inch = 2.54 cm

1995

2000 2005 2010

Considered
Baseline to be
1931-1990 (60

years)
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OCEAN

Lateral

Intrusion

SALT WATER

Unconfined coastal aquifer depicting vertical and horizontal
encroachment induced by pumping (modified from SIRWMD 2017)
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Fresh

Groundwater Saline ground
water

1. When some fresh GW diverted from aquifer, yet hydraulic gradient still
slopes towards FW/SW boundary

2. May take hundreds of years for boundary to shift a significant distance
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Decreasing Precipitation — Recharge

Annual Florida Rainfall: 1991-2011

70 .
Fits
o Regress

65- = = = Lowess
=
S 60-
>
@
<
O 557
=
c
‘S 50~
=4

45- ®

b °
401, : : : :
1990 1995 2000 2005 2010

SERCC, 2014
1 inch = 254 cm

Years Annual Mean

1991-1998 147.07 om (57.90in)  During study, but
1999-2011 129.46 cm (50.97 in) 3e(e;;eased’ SQ qgi/o i
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Recharge to FAS
FAS (Bellino et al. 2018)

19.00 cm/yr

R

Assume recharge declined post 1999
= -2.28 cm/yr (linear?)
= -27.36 cm (cumulative)

Extraction from FAS

GW extraction (Marella 2004)
Used 1990 as baseline (2.39 cm/yr)
= 13% of recharge (Important)

However, estimated extraction
1990-2010 (net decrease)

Relative to recharge, 1991-2011,
effect of extraction is minor
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d Sea-Level Rise

Walton (2007) estimated rise (1950-1999) = 0.3 cml/yr
For 1999-2011, cumulative total = 3.6 cm

Relative to recharge reductione, effect of sea-level rise is minor

Primary Driver
Reduction in rainfall, and
subsequent reduction in recharge
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Precipitation 1991-2018

Can Florida Recover? If steady state, eventually yes

2011
I

(9] ()] (o)}
o 3 & 3
1 1 1 1

Rainfall (inches/year)
3

IS
(9]
1

40_ 1
1990 1995 2000 2005 2010 2015 2020

Southeast Regional Climate Center 2019
ininch = 254 cm



Conceptual Model
non-steady state model

Assume Sea level is rising

Independent of precipitation
e Passive encroachment will continue
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Importance of Study

« Passive encroachment observed in FAS
« Changes: large in areal extent (at least 73%),
but small relative percent change (2%-6%)
* Mostly driven by reduction in precipitation/recharge
* If steady state conditions: trends could reverse

* However, with sea level rise, understanding
passive encroachment becomes imperative
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Questions?

Rick Copeland, P.G., Ph.D.
Florida Department of Environmental Protection

rick.copeland@floridadep.org

(W) 850-245-8503
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